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Generic criticality in a model of evolution
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~Received 30 March 2000; revised manuscript received 15 May 2000!

Using Monte Carlo simulations, we show that for a certain model of biological evolution, which is driven by
nonextremal dynamics, active and absorbing phases are separated by a critical phase. In this phase both the
density of active sitesr(t) and the survival probability of spreadingP(t) decay ast2d, whered;0.5. At the
critical point that separates the active and critical phasesd;0.29, which suggests that this point belongs to the
so-called parity-conserving universality class. Such a classification is also supported by finite-size analysis.
The model has infinitely many absorbing states and, except for a single point, has no apparent conservation
law.

PACS number~s!: 05.70.Ln
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I. INTRODUCTION

Recently, the statistical mechanics of complex syste
has attracted a lot of attention. The main motivation
studying these systems is the belief that a qualitative un
standing can be obtained by studying relatively simple ma
ematical models. Indeed, there are a number of exam
where~spin! glasses, proteins, biological evolution, societi
or economies have been described in terms of very sim
models@1,2#. In quantitative terms, complexity is very ofte
related to the absence of a characteristic length or time s
~i.e., scale invariance!. For example, paleontological da
suggest that outbreaks of evolutionary activity substanti
varied in size and in addition were correlated over large
riods of time@3#. Similar features seem to characterize oth
at first sight unrelated, processes like earthquakes, st
exchange fluctuations, or the flow of sand.

The absence of characteristic scales is a well-known p
erty of critical systems in the field of equilibrium statistic
mechanics. However, in equilibrium statistical mechani
criticality is an exception rather than a rule and it requi
fine tuning of control parameter~s!. On the other hand, the
apparent abundance of scale invariance among complex
tems suggests that this property should be in some s
generic and should not require such fine tuning.

An interesting idea that tries to explain the scale inva
ance in various systems was proposed by Bak, Tang,
Wiesenfeld under the name of self-organized critica
~SOC! @4#. They have shown that the dynamics of som
simple systems might naturally lead these systems to a c
cal state. Such behavior was subsequently observed
number of other models.

However, models exhibiting SOC are usually driven
very special dynamics. This is either the so-called extre
dynamics@5# ~which drives some evolutionary models! or
conservative dynamics~which drives sandpilelike models!.
When these dynamical rules are even slightly violated,
criticality is usually destroyed. For example, in the Ba
Sneppen model@6# describing the evolution of an ecosystem
the criticality is lost when we modify the rule that only th

*Email address: lipowski@main.amu.edu.pl
PRE 621063-651X/2000/62~3!/3356~4!/$15.00
s
r
r-
-

es
,
le

le

y
-
,
k-

p-

,
s

ys-
se

-
nd

ti-
a

al

e

,

least fit species dies out and is replaced by a new one. H
ever, on biological grounds, one expects that extinct
might happen to a more fit species as well. It would be
sirable to construct a model that would not be driven by su
a special dynamics but whose criticality would be in som
sense generic.

In search of generic criticality, we might recall that su
models exist in equilibrium statistical mechanics; the prim
example is theXY model. In this model the low-temperatur
phase is critical and correlation functions decay algeb
ically. Above a certain temperature the criticality of th
model is destroyed and the system is in a disordered ph
where correlation functions decay exponentially@7#.

Despite the wealth of models with critical behavior, th
existence of generic criticality in nonequilibrium statistic
mechanics is still an open problem@8#. In some cases, certai
symmetries, conservation laws, or separation of time sc
are responsible for the criticality of the system. These fact
also play an important role in SOC models. Recently, so
SOC models have been related to more general mo
@9–11#. It turns out that in some cases SOC correspond
the critical points of these more general models. Howev
the criticality of the latter models most likely resembles o
dinary criticality ~i.e., the criticality exists only at some iso
lated points!.

In the present paper we study a model of biological e
lution. The model describes an ecosystem at the coa
grained level similarly to the Bak-Sneppen model, but it
driven by nonextremal dynamics. We show that in so
range of a control parameter certain quantities exhibit pow
law behavior and thus the model might be said to be gen
cally critical. The behavior of our model is determined by
certain symmetry, which places the model in the so-cal
parity-conserving~PC! universality class.

II. THE MODEL AND ITS PROPERTIES

A. Definition

Our model is a variant of other recently introduced mo
els @12–14#. It is defined on a one-dimensional lattice, whe
for each bond between the nearest-neighbor sitesi and i
11, we introduce bond variableswi ,i 11P(20.5,0.5). Intro-
ducing the parameterr, we call the sitei active when
3356 ©2000 The American Physical Society
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wi ,i 11wi 21,i,r . ~1!

Otherwise, the site is called nonactive. The model is driv
by random sequential dynamics and when the active sitei is
selected, we assign anew, with uniform probability, tw
bond variableswi ,i 11 and wi 21,i . Nonactive sites are no
updated, but updating a certain~active! site might change the
status of its neighbors. The above rules immediately im
the existence of an absorbing state, i.e., one without ac
sites.

One can interpret the sites as species with the fitness
ing a product of the attached bond variables. When the
ness of a certain species is lower than a threshold valuer, the
species becomes extinct and is replaced by another spe

B. Steady-state properties

To examine the properties of our model, we used Mo
Carlo simulations. Since the implementation of the abo
dynamical rules on a computer is straightforward, below
present only the results of these simulations. An import
quantity characterizing this model is the steady-state den
of active sitesr. Figure 1 shows the densityr as a function
of r. The simulations were performed for the linear syst
size L5105 and we checked that the results presented
within a small statistical error, size independent. For eacr,
after relaxing the random initial configuration fort rel5104,
we made measurements during runs oft5105 ~the unit of
time is defined as a single update per lattice site on avera!.
This figure suggests that the model undergoes a continu
transition atr 5r c;0.027 and forr ,r c the model should be
in the absorbing phase withr50. The simulations close to
the critical point (r ,0.03) were more extensive and we us
L553105, t rel553104, and t5106. Let us also note tha
since bond variables are continuous there is a continu
degeneracy of the absorbing state.

FIG. 1. The steady-state density of active sitesr as a function
of r.
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C. Dynamical behavior

We observed that forr ,r c the system is rather reluctan
to reach an absorbing state. Only forr ,0 does the system
reach such a state quite quickly. The results of our simu
tions presented below show that for 0,r ,r c the model re-
mains in the critical phase.

First, we examined the time evolution of the density
active sitesr(t). After the system starts from an arbitrar
initial configuration containing a finite fraction of activ
sites, the densityr(t) should decay to zero in the absorbin
phase, and this decay should be faster than a power law
the critical point one expects a power-law decayr(t);t2d.
In the active phaser(t) asymptotically remains positive.

In Fig. 2 we showr(t) as a function oft plotted on a
logarithmic scale. Forr 50.03 the densityr(t) clearly ap-
proaches a positive value, which confirms that in this c
the model is in the active phase. Moreover, a faster t
power-law decay is observed forr 521024 and 21026.
However, forr 50 and 0.02 our simulations show a powe
law decay with the exponentd50.50(1). For r 50.027,
which is very close to the critical point~see Fig. 1!, the
exponentd50.29(1).

Critical properties of models with absorbing states can
also studied using the so-called dynamic~or epidemic!
method@15#. In this method, we prepare the system in one
the absorbing states except for a localized activity~usually at
a single site!. Subsequently, the system evolves according
its dynamical rules and and we monitor statistical proper
of such runs. One of the important quantities in this tec
nique is the probabilityP(t) that a given activity survives
until time t. On general grounds, one expects thatP(t) be-
haves similarly tor(t), namely, in the active phaseP(t)
tends to a finite value, in the absorbing phase it rapi
~faster than a power law! decreases to zero, and in the critic
phase it decays ast2d8, where d8 is an exponent that in
general might be different fromd @16,17#.

FIG. 2. The density of active sitesr(t) as a function oft plotted
on a log-log scale. Simulations were made forL5105 and for each
r we averaged over about 50 independent runs.
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Figure 3 shows the results of our dynamical simulatio
Simulations were performed for sizes that ensured that
spreading activity did not reach the boundaries of the lat
~typically L523104 is sufficient!. The number of runs var
ied from 106 for r 521024,21026, and 0 to 23104 for r
50.03. The results shown in Fig. 3 lead to the same con
sions as those in Fig. 2: for 0<r ,r c the model remains in
the critical phase withd850.50(1). For r ,0 the survival
probability decays most likely faster than an inverse pow
of t.

The fact that forr ,0 the model is in the absorbing pha
is to some extent understood. That is, forr ,0 there exists a
finite probability that after updating a pair of sites will b
come nonactive forever. Indeed, when one of the newly
lected bonds~say,wi ,i 11) satisfies the condition

uwi ,i 11u,2r /0.5, ~2!

then the sitesi and i 11 become permanently nonactiv
That is, no matter what other bonds~i.e., wi 21,i and
wi 11,i 12) are attached to these sites, they will always rem
nonactive. Forr ,0 there is a finite probability of satisfying
Eq. ~2! and the above mechanism leads to the rapid decr
of active sites and hence the system quickly reaches an
sorbing state. The above mechanism is not effective for
>0 since there is no value that would ensure perman
nonactivity of a certain site. Essentially the same mechan
is at work in another model with absorbing states@14#.

A more detailed analysis ofr in the vicinity of the critical
point suggests that the exponentb is slightly less then unity.
Together with the value ofd;0.29 at the critical pointr
5r c;0.027 ~as estimated from the results in Fig. 2!, this
strongly suggests that this model behaves similarly to so
other models, which are commonly termed the pari
conserving universality class@18,19#. In this class of models

FIG. 3. The survival probabilityP(t) as a function oft plotted
on a log-log scale. Initially we setwi ,i 115w050.2 for all bonds
except for those surrounding a certain site that was set as activ
different choice ofw0 might change the asymptotic slope atr 5r c

;0.027, but it should not affect the asymptotict20.5 decay for 0
<r ,r c .
.
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it is already known that in the critical phased50.5. An
interesting feature of our model is the fact that the critic
phase terminates at a certain point (r 50) and~most likely!
an exponential decay sets in. Let us also notice that for
50.027 the slope in Fig. 3 is also close to 0.29. Howev
this might be a coincidence, since some variability of th
exponent in the dynamic Monte Carlo method is an ant
pated feature@16,17#.

Initially, the behavior of models belonging to the PC un
versality class was thought to be determined by the lo
conservation laws@18#. Later, however, some models we
found that do not possess this property but that exhibit

FIG. 4. The steady-state densityr as a function of the system
size L for r 521024 (n), 0 (s), 0.027 (d), and 0.03 (h).
For r 50 and 0.027 the estimated slope equals 0.98~3! and 0.49~3!,
respectively.

FIG. 5. The absorption timet as a function of the system sizeL
for r 521024 (n), 0 (s), 0.027 (d), and 0.03 (h). For r
50 and 0.027 the estimated slope equals 1.98~5! and 1.73~5!, re-
spectively.
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PRE 62 3359GENERIC CRITICALITY IN A MODEL OF EVOLUTION
same critical behavior@19#. Since these models have a sym
metric and double-degenerate absorbing state, it seems
this is another property that leads to PC criticality. Recen
a model with infinitely many absorbing states was found t
also belongs to the PC universality class, but this might ag
be attributed to some conservation law in its dynamics@17#.
The present model has an infinitely degenerate absor
state and no conservation law@20#. We attribute the PC criti-
cality of this model to a certain global symmetry of th
model, namely, one can easily see that by inverting all b
variables (wi ,i 11→2wi ,i 11) one does not change th
~non!activity of any site. This Ising-like symmetry dete
mines the structure of any absorbing state forr>0: all bond
variables must be either positive or negative.

Let us note that, although there is no conservation law
this model in general, there is such a law forr 50. Indeed,
for r 50 the dynamics of the model is special: it is only t
sign of wi ,i 11 that matters and only those sites are act
where negative and positivewi ,i 11 meet. As a result, the
dynamics of the model is equivalent to a particular branch
annihilating random walk~BARW! with an even number o
offspring @21#. The power-law characteristicst20.5 are al-
ready known for related BARW models@22#.

D. Finite-size analysis

To provide yet another confirmation that our model b
longs to the PC universality class we present the results
finite-size analysis. In Fig. 4 we present the steady-state
sity r as a function of the system sizeL. One expects that a
criticality r;L2b/n' and for the PC universality class w
haveb/n';0.50(1). Moreover, in the critical phase (0,r
re
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,rc) the densityr should scale asL21. Such a behavior is
clearly seen in Fig. 4. One can also see that in the ac
phaser converges to a positive value and in the absorb
phase (r ,0) r decays most likely faster than a power ofL.

A similar analysis for the average absorption timet is
shown in Fig. 5. At criticalityt increases asL1.73 and such a
behavior was also observed for some other models of the
universality class. In the critical phaset seems to increase a
L2. Moreover, in the active phaset most likely increases
faster than a power ofL and in the absorbing phase slow
than a power ofL.

III. SUMMARY

In summary, we have shown that a particular evolution
model with nonextremal dynamics exhibits generic critic
ity. Such a behavior is most likely related to a special sy
metry of this model. One might hope that this criticality is
some extent robust with respect to structural perturbation
this model ~other lattices, definitions of fitness function
etc.!. Since for some of these variants the analogy with r
dom walk models might not hold, it is possible that the cri
cality of such models will exhibit some sort of nonuniversa
ity. However, analysis of such extensions is left as a fut
problem.
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