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Generic criticality in a model of evolution
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Using Monte Carlo simulations, we show that for a certain model of biological evolution, which is driven by
nonextremal dynamics, active and absorbing phases are separated by a critical phase. In this phase both the
density of active sitep(t) and the survival probability of spreadifi®(t) decay ag ™~ °, whered~0.5. At the
critical point that separates the active and critical phase8.29, which suggests that this point belongs to the
so-called parity-conserving universality class. Such a classification is also supported by finite-size analysis.
The model has infinitely many absorbing states and, except for a single point, has no apparent conservation
law.

PACS numbd(s): 05.70.Ln

[. INTRODUCTION least fit species dies out and is replaced by a new one. How-
ever, on biological grounds, one expects that extinction

Recently, the statistical mechanics of complex system#night happen to a more fit species as well. It would be de-
has attracted a lot of attention. The main motivation forsirable to construct a model that would not be driven by such
studying these systems is the belief that a qualitative unde@ special dynamics but whose criticality would be in some
standing can be obtained by studying relatively simple mathSense generic.
ematical models. Indeed, there are a number of examples In search of generic criticality, we might recall that such
Where(spin) g|assesl proteins, bio|ogica| evo|ution' societies'mOdeB exist in equilibrium statistical mechanics; the prime
or economies have been described in terms of very simpléxample is theX'Y model. In this model the low-temperature
models[1,2]. In quantitative terms, complexity is very often phase is critical and correlation functions decay algebra-
related to the absence of a characteristic length or time scaigally. Above a certain temperature the criticality of the
(i.e., scale invariande For example, paleontological data model is destroyed and the system is in a disordered phase,
suggest that outbreaks of evolutionary activity substantiallyvhere correlation functions decay exponenti&lfy.
varied in size and in addition were correlated over large pe- Despite the wealth of models with critical behavior, the
riods of time[3]. Similar features seem to characterize otherexistence of generic criticality in nonequilibrium statistical
at first sight unrelated, processes like earthquakes, stockaechanics is still an open probldi]. In some cases, certain
exchange fluctuations, or the flow of sand. symmetries, conservation laws, or separation of time scales

The absence of characteristic scales is a well-known propare responsible for the criticality of the system. These factors
erty of critical systems in the field of equilibrium statistical also play an important role in SOC models. Recently, some
mechanics. However, in equilibrium statistical mechanicsSOC models have been related to more general models
criticality is an exception rather than a rule and it required 9—11]. It turns out that in some cases SOC corresponds to
fine tuning of control paramete). On the other hand, the the critical points of these more general models. However,
apparent abundance of scale invariance among complex syi€ criticality of the latter models most likely resembles or-
tems suggests that this property should be in some Seng@ary criticality (i.e., the Criticality exists only at some iso-
generic and should not require such fine tuning. lated point.

An interesting idea that tries to explain the scale invari- In the present paper we study a model of biological evo-
ance in various systems was proposed by Bak, Tang, anigtion. The model describes an ecosystem at the coarse-
Wiesenfeld under the name of self-organized criticalitygrained level similarly to the Bak-Sneppen model, but it is
(SOQ [4]. They have shown that the dynamics of somedriven by nonextremal dynamics. We show that in some
simple systems might naturally lead these systems to a critfange of a control parameter certain quantities exhibit power-
cal state. Such behavior was subsequently observed in law behavior and thus the model might be said to be generi-
number of other models. cally critical. The behavior of our model is determined by a

However, models exhibiting SOC are usually driven bycertain symmetry, which places the model in the so-called
very special dynamics. This is either the so-called extremaparity-conservingPC) universality class.
dynamics[5] (which drives some evolutionary modglsr
conservative dynamicéwvhich drives sandpilelike models Il. THE MODEL AND ITS PROPERTIES
When these dynamical rules are even slightly violated, the
criticality is usually destroyed. For example, in the Bak-
Sneppen mod¢b] describing the evolution of an ecosystem,  Our model is a variant of other recently introduced mod-
the criticality is lost when we modify the rule that only the els[12-14. It is defined on a one-dimensional lattice, where

for each bond between the nearest-neighbor ditasd i
+1, we introduce bond variables ;. ; € (—0.5,0.5). Intro-
*Email address: lipowski@main.amu.edu.pl ducing the parametar, we call the sitd active when

A. Definition
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of rFIG' 1. The steady-state density of active seas a function FIG. 2. The density of active sitggt) as a function of plotted
’ on a log-log scale. Simulations were made lfer 10° and for each
r we averaged over about 50 independent runs.
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C. Dynamical behavior

Otherwise, the site is called nonactive. The model is driven We observed that for<r the system is rather reluctant

by random sequential dynamics and when the active site 1o reach an absorbmg.state_. Only for0 does the syst.em
selected, we assign anew, with uniform probability, tWOreach such a state quite quickly. The results of our simula-

bond variablesw, ., andw;_;. Nonactive sites are not tions presented below show that forx@<r . the model re-

updated, but updating a certdimctive site might change the mal':r_'S tm the C”“C‘T’“ pdh?ﬁe.t_ luti f the densitv of
status of its neighbors. The above rules immediately imply -Irst, we exarr::te h € time evolu |onfo € enb§| y o
the existence of an absorbing state, i.e., one without activ@qt.'ve S'te‘?’p (t)‘. ert e.s_ystem ?“?‘”S rom an ar |tr§ry
sites. Initial configuration containing a finite fraction of active

One can interpret the sites as species with the fitness béites' the den;ityo(t) should decay 1o zero in the absorbing
ing a product of the attached bond variables. When the fitPhase. and this decay should be faster than a power law. At

.y - — 75
ness of a certain species is lower than a threshold valine the critical point one expects a power-law degdy)~1t"°.

. : : . In the active phase(t) asymptotically remains positive.
species becomes extinct and is replaced by another spemeg In Fig. 2 we showp(t) as a function oft plotted on a

logarithmic scale. For=0.03 the densityp(t) clearly ap-
proaches a positive value, which confirms that in this case
the model is in the active phase. Moreover, a faster than
To examine the properties of our model, we used Montgyower-law decay is observed for=—10% and —10 6.
Carlo simulations. Since the implementation of the above{owever, forr=0 and 0.02 our simulations show a power-
dynamical rules on a computer is straightforward, below weaw decay with the exponend=0.5Q(1). For r=0.027,
present only the results of these simulations. An importantvhich is very close to the critical poinisee Fig. 1, the
quantity characterizing this model is the steady-state densitgxponents=0.291).
of active sitesp. Figure 1 shows the densigyas a function Critical properties of models with absorbing states can be
of r. The simulations were performed for the linear systemalso studied using the so-called dynanfor epidemi¢
sizeL=10" and we checked that the results presented arenethod[15]. In this method, we prepare the system in one of
within a small statistical error, size independent. For each the absorbing states except for a localized actitusually at
after relaxing the random initial configuration fog,=10%, @ single sit¢ Subsequently, the system evolves according to
we made measurements during runstefl®® (the unit of its dynamical rules and and we monitor statistical properties
time is defined as a single update per lattice site on averagedf such runs. One of the important quantities in this tech-
This figure suggests that the model undergoes a continuotdue is the probabilityP(t) that a given activity survives
transition atr =r .~0.027 and for <r the model should be until time t. On general grounds, one expects tR4t) be-
in the absorbing phase with=0. The simulations close to haves similarly top(t), namely, in the active phase(t)
the critical point ¢ <0.03) were more extensive and we usedténds to a finite value, in the absorbing phase it rapidly
L=5x10P, t,=5x10% andt=10°. Let us also note that (faster than a power lavdecreases to zero, and in the critical
since bond variables are continuous there is a continuoyshase it decays as %', where 8’ is an exponent that in
degeneracy of the absorbing state. general might be different from [16,17].

B. Steady-state properties
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FIG. 3. The survival probabilit(t) as a function ot plotted FIG. 4. The steady-state densjtyas a function of the system
on a log-log scale. Initially we set;;,;=w=0.2 for all bonds  gjze| for r=—104 (A), 0 (O), 0.027 @), and 0.03 ().
except for those surrounding a certain site that was set as active. Ay r =0 and 0.027 the estimated slope equals (BP8nd 0.493),
different choice ofw, might change the asymptotic sloperatr respectively.
~0.027, but it should not affect the asymptotic®® decay for 0

<r<r,. it is already known that in the critical phas®=0.5. An

Fi 3 sh h its of d ical simulat interesting feature of our model is the fact that the critical
Sj lgljutr_e shows t efresuctjsfo our ytrp]artmca S'”:jut?]t'?rli hase terminates at a certain point=(0) and(most likely)

Imufations were performed for sizes that ensure at thin exponential decay sets in. Let us also notice that for
spreading activity did not reach the boundaries of the lattice

(typically L =2 10 is sufficieny. The number of runs var =0.027 the slope in Fig. 3 is also close to 0.29. However,
. N ' " this might be a coincidence, since some variability of this
ied from 16 for r=—10"%—-10"%, and 0 to 210" for r 'S mig net ! variaoiity !

I exponent in the dynamic Monte Carlo method is an antici-
=0.03. The results shown in Fig. 3 lead to the same concluba?ed featuré16 1%_
sions as those in Fig. 2: for<r <r the model remains in Initially, the behavior of models belonging to the PC uni-

the critical phase withy’=0.50(1). Forr<0 the survival g rsaiity "class was thought to be determined by the local
probability decays most likely faster than an inverse power.,nservation law$18]. Later, however, some models were

of t. o . found that do not possess this property but that exhibit the
The fact that for <0 the model is in the absorbing phase
is to some extent understood. That is, fer0 there exists a 7
finite probability that after updating a pair of sites will be-
come nonactive forever. Indeed, when one of the newly se- 6 -
lected bondgsay,w; ;. 1) satisfies the condition
’ log,o(T)
|w; i +1|<—r/0.5, (2 5 1
then the sites andi+1 become permanently nonactive. 4 -
That is, no matter what other bondse., w;_;; and
Wi 1j+2) are attached to these sites, they will always remain 3
nonactive. For <0 there is a finite probability of satisfying
Eq. (2) and the above mechanism leads to the rapid decrease
of active sites and hence the system quickly reaches an ab- 21
sorbing state. The above mechanism is not effectiver for
=0 since there is no value that would ensure permanent 17
nonactivity of a certain site. Essentially the same mechanism
is at work in another model with absorbing staf&4]. 0 . . T .
A more detailed analysis gf in the vicinity of the critical 0 1 2 3 4 5

point suggests that the exponghts slightly less then unity. log, (L)
Together with the value 06~0.29 at the critical point 10

=r.~0.027 (as estimated from the results in Fig), 2his FIG. 5. The absorption time as a function of the system sike
strongly suggests that this model behaves similarly to somgr r=-10"* (A), 0 (O), 0.027 @), and 0.03 (1). For r
other models, which are commonly termed the parity-=0 and 0.027 the estimated slope equals (6P&nd 1.735), re-
conserving universality clagd8,19. In this class of models, spectively.
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same critical behavidrl9]. Since these models have a sym- <r.) the densityp should scale ak 1. Such a behavior is
metric and double-degenerate absorbing state, it seems thaearly seen in Fig. 4. One can also see that in the active
this is another property that leads to PC criticality. Recentlyphasep converges to a positive value and in the absorbing
a model with infinitely many absorbing states was found thaphase (<0) p decays most likely faster than a powerlof
also belongs to the PC universality class, but this might again A similar analysis for the average absorption times

be attributed to some conservation law in its dynaniicd.  shown in Fig. 5. At criticalityr increases ak'7®and such a
The present model has an infinitely degenerate absorbingehavior was also observed for some other models of the PC
state and no conservation I14@0]. We attribute the PC criti-  universality class. In the critical phaseseems to increase as
cality of this model to a certain global symmetry of this 2. Moreover, in the active phase most likely increases
model, namely, one can easily see that by inverting all bondaster than a power df and in the absorbing phase slower
variables v j,1— —W; ;1) one does not change the than a power of..

(nonactivity of any site. This Ising-like symmetry deter-

mines the structure of any absorbing staterfei0: all bond . SUMMARY

variables must be either positive or negative.

Let us note that, although there is no conservation law in In summary, we have shown that a particular evolutionary
this model in general, there is such a law for0. Indeed, Mmodel with nonextremal dynamics exhibits generic critical-
for r=0 the dynamics of the model is special: it is only the ity. Such a behavior is most likely related to a special sym-
sign of w; ;,, that matters and only those sites are activemetry of this model. One might hope that this criticality is to
where negative and positive; ;,; meet. As a result, the Some extent robust with respect to structural perturbations of
dynam|cs of the model is equ|va|ent to a part|cu|ar branch"]dhls model (Other Iattlces definitions of fitness fUnCtlon
annihilating random walkBARW) with an even number of etc). Since for some of these variants the analogy with ran-
offspring [21]. The power-law characteristids ®° are al- dom walk models might not hold, it is possible that the criti-
ready known for related BARW model&2]. cality of such models will exhibit some sort of nonuniversal-

ity. However, analysis of such extensions is left as a future

D. Finite-size analysis problem.

To provide yet another confirmation that our model be-
longs to the PC universality class we present the results of a
finite-size analysis. In Fig. 4 we present the steady-state den-
sity p as a function of the system site One expects that at | thank Dr. H. Hinrichsen for interesting discussion and
criticality p~L~#/"+ and for the PC universality class we the Department of Mathematics of Heriot-Watt University
have B/v, ~0.50(1). Moreover, in the critical phase (Or (Edinburgh, Scotlandfor allocation of computer time.
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